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Abstract

It is sometimes reported in the heat transfer studies of gaseous media using the near-wall turbulence models that
their fully-developed Nu predictions deviate from the experimental correlations. This work approaches the rigorous
formulation of the Reynolds-averaged equation in terms of temperature from a fundamental basis, in order to
highlight the possible errors due to the usual overapproximation made for the Reynolds-averaged energy equation.

It is suggested that Eq. (18) which is one of the rigorous forms of the Reynolds-averaged equation and free of the
unknown correlation of the pressure di�usion term is suitable for the analysis of turbulent convective heat transfer
in gaseous media. # 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In a very recent paper (Hrenya et al. [1]), a com-

parative study of nine di�erent versions of low

Reynolds number (LRN) k±e turbulence models in

terms of their ability to predict wall heat transfer rates

for straight pipe ¯ow was carried out. Remarkable de-

viations (around 18%) in the Nusselt number predic-

tions from the experimental correlations were found

even when the algebraic expression of variable turbu-

lent Prandtl number in terms of turbulent Peclet num-

ber, as proposed by Kays and Crawford [2], was

applied to the calculations. Level of agreement of the

predictions with the experimental correlations for a

given turbulence model was attributed to the unique

ability of this model to accurately capture the radial

distribution of the eddy viscosity �mt� in the study of
Hrenya et al. Similar observations were reported by
Chang et al. [3] in the predictions of the fully devel-

oped Nusselt number for straight-pipe ¯ows using four
di�erent versions of low Reynolds number k±e models
but with the assumption of constant turbulent Prandtl

number, as compared to the experimental correlations.
The preceding analyses of turbulent heat transfer

problems were to solve the Reynolds-averaged energy
equation in which the turbulent heat ¯ux was modeled

by using the classical Boussinesq approximation,

ÿu 0j y 0 � at
@y
@x j

�1�

The unknown eddy di�usivity for heat at, is expressed
by the known eddy viscosity so that

at � nt
st

�2�

Thus, in this formulation the analogy is assumed
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tacitly between turbulent momentum and heat trans-

port. Also, the st needs to be prescribed either as a
constant value [3] or from an algebraic function of tur-

bulent Peclet number [2].
An alternative approach to determine st is to solve

directly the transport equations for turbulent heat
¯uxes [4±6]. In particular, this approach works prop-

erly for the situations where the similarity between the
velocity and temperature ®elds does not hold so that

st is far from constant in contrast to the situation in a
simple boundary-layer ¯ow where the velocity and

temperature ®elds develop simultaneously. However,
the near-wall turbulence models for the scalar (heat or

mass) transport is still rather primitive as compared to
those for the momentum transport (¯ow ®eld).

In this work, a rigorous formulation of the

Reynolds-averaged energy equation for gaseous media

is revisited and compared to the one commonly
adopted in the turbulent heat transfer analysis by the
researchers. Special attention is placed on the situation
when the Reynolds-averaged energy equation has to

work with the LRN k±e turbulence models in a chan-
nel ¯ow problem.

2. Reynolds-averaged formulation

For the energy conservation without consideration
of thermal radiation in a steady-state turbulent ¯ow,

the (thermal) energy equation can be expressed in
terms of either internal energy or enthalpy, respect-
ively, as follows [7].

Nomenclature

C1, C2, C3,
C4, Cm

turbulence model coe�cients

Cf skin friction coe�cient

cp, cv speci®c heat capacities at
constant pressure and at
constant volume, respect-

ively
D, E model functions
e internal energy

Ec modi®ed Eckert number;
=l� u2

0

c�pq�wH �

ft, f2, f
0
2, ft, fw1, fw2, fm viscous damping functions

Gk production rate of turbulent

kinetic energy
H channel height
h enthalpy

k turbulent kinetic energy
Nu Nusselt number based on

the hydraulic diameter

P, p instantaneous and mean
pressures, respectively

qw wall heat ¯ux

R universal constant
ReDh

, Ret Reynolds numbers based on
the mean velocity and
hydraulic diameter and on

the friction velocity and
height, respectively

T, t instantaneous and mean

temperatures, respectively
U, u, ut instantaneous, mean, and

friction velocities, respect-

ively
y normal distance from wall

Greek symbols
a thermal di�usivity
b coe�cient of thermal expansion

dij Dirac delta function
e dissipation rate of turbulent kinetic energy
Y, y Nondimensionalized forms of instantaneous

and mean temperatures, respectively;
�Y � T �ÿT �0q�wH �=l��

l thermal conductivity

m viscosity; = m�
r�u�

0
H �

n kinematic viscosity
r density
s, st molecular and turbulent Prandtl numbers,

respectively
sk, se turbulent di�usion coe�cients for k and e,

respectively

tw wall shear stress
F viscous dissipation rate

Superscripts
' ¯uctuation
� dimensional property
+ normalized by the wall variables, qw, ut, and n
ÿ Reynolds averaging

Subscripts
b bulk
cp, cv at constant pressure and constant volume,

respectively

p ®rst grid node from wall
e� e�ective
t eddy

w wall
0 reference state
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where h� � e� � p�=r�. The viscous dissipation term
m�F� is usually negligible for the low-Mach-number

¯ows as to be investigated in this study. By use of the
canonical relations for internal energy and enthalpy
and the Maxwell's relations, the changes in internal

energy and enthalpy are expressed, respectively, as [7]

de� � c�v dT � ÿ 1

r�2

"
T �
�
@p�
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�
r�
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#
dr� �5�

dh� � c�p dT � � 1

r�
ÿ
1ÿ b�T �

�
dP � �6�

where

b� � ÿ 1

r�

�
@r�

@T �

�
P �

�7�

Substitution of Eqs. (5) and (6) into Eqs. (3) and (4)

yields
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which are two di�erent forms in terms of temperature

but mathematically equivalent equations of energy
conservation for a pure substance. For the case of
incompressible liquid, Eqs. (8) and (9) reduces to an

identical form of

@

@x �j

ÿ
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!
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while for the case of ideal gas (such as the most gas-
eous media under atmospheric pressure and room tem-
perature), Eqs. (8) and (9) can be expressed,

respectively, by
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with

c�p � c�v � R� �13�

A further simpli®cation can be made under the con-
dition of small temperature variations (<20 K, which
were the test conditions in many convective heat trans-

fer studies), that is, the speci®c heat capacities, thermal
conductivity, and density can be approximately taken
as constants. Incorporated with the assumptions, Eqs.

(11) and (12) can be rewritten, respectively, in dimen-
sionless form of

@

@x j

ÿ
rUjY

� � @

@x j

�
m
scv

@Y
@x j

�
�14�

@
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ÿ
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� � @

@x j

�
m
scp

@Y
@x j

�
� Ec

@

@x j

ÿ
PUj

� �15�

where scv and scp are the molecular Prandtl numbers
de®ned by the speci®c heat capacities at constant
volume and at constant pressure, respectively.

The Reynolds-averaged continuity and momentum
equations are given by

@uj
@x j
� 0 �16�

@

@x j
�rujui � � ÿ @p

@x j

� @
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�
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@ui
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0
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while the Reynolds-averaged energy equation can be

written in either form of

@

@x j

ÿ
rujy

� � @

@x j

�
m
scv

@y
@x j

�
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ru 0j y
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or

@

@x j

ÿ
rujy

� � @

@x j

�
m
scp

@y
@x j

�
� Ec

@

@x j
�puj �

ÿ @

@x j

�
ru 0j y

0
�
� Ec

@

@xj

�
p 0u 0j

� �19�

In Eqs. (17) and (18), two unknown correlations, i.e.
Reynolds stress u 0i u

0
j and the turbulent heat ¯ux u 0j y

0

appear and they are generally modeled by using the
classical Boussinesq approximation for the eddy di�-
usivity for momentum nt:
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and by Eq. (1) for the eddy di�usivity for heat at, in
the ¯ows possessing low level of anisotropy.
Nevertheless, if we choose the other set of equations,

i.e. Eqs. (17) and (19) in the formulation, one more
unknown correlation p 0u 0j in addition to u 0i u

0
j and u 0j y

0

are needed to be modeled. There exists another extra

term, Ec @
@x j
�puj �, in the Reynolds-averaged energy

equation written in terms of scp as compared to the
one in terms of scv. However, it is found that the
Reynolds-averaged energy equation adopted in most of

the published papers [1,5,6,8] is in form of

@

@x j

ÿ
rujy

� � @

@x j

�
m
scp

@y
@x j

�
ÿ @

@x j

�
ru 0j y

0
�

�21�

in which the terms of Ec @
@x j
�puj � and Ec @

@x j
�p 0u 0j �, com-

pared to Eq. (19), are ignored. This leads to a contra-
diction that the Reynolds-averaged energy equation

can be given in the same form but expressed in terms
either of scv, Eq. (18), or of scp, Eq. (21), for the ideal
gaseous media.

The cause why Eq. (21), instead of Eq. (18) or Eq.
(19), was so commonly used in the studies of convec-
tive heat transfer by the researchers comes from the
following approximation. As typically argued by

Schlichting [9], the work of compression and that due
to friction, i.e. the last term in the right-hand side of
Eq. (15), become important for the calculation of the

temperature ®eld when the free-stream (reference) vel-
ocity is comparable with that of sound, and when the
equivalent temperature di�erence �� q�wH

�=l��
becomes of the order of the absolute temperature of
the free stream �T �0�. This occurs in practice in the
high-speed ¯ight of vehicles at very high altitudes;

otherwise, the term of Ec @
@x j
�PUj � is usually negligible

in the calculation of the temperature ®eld.
Nevertheless, the Reynolds-averaged process of

@
@ x j
�PUj � yields two terms: @

@x j
� puj � and @

@x j
� p 0u 0j �. The

result in our study, which will be presented later, cor-
roborated the above argument, that is, the temperature
®elds predicted with and without consideration of the

Ec @
@x j
� puj � term indeed di�ered slightly for the low-

Mach-number ¯ows investigated in the study. In con-

trast, the pressure di�usion term, @
@x j
� p 0u 0j �, cannot be

negligible in the near-wall region of the ¯ow ®eld
[10,11]. The pressure di�usion term is also appeared in
the formulation of the transport equation of turbulent
kinetic energy (k ) [12]. As shown in the computed

budget of the pressure di�usion term from the DNS
data of a turbulent channel ¯ow with low Reynolds
number [13], the pro®le of the pressure di�usion term

reaches a maximum in the region very close to the wall
(see Fig. 5 of [13]). Although the DNS data [13] reveals
that the pressure di�usion term is small compared to

the other terms in the transport equation of k, very
close to the wall the pressure di�usion term is of the
same order as the di�erence between the dissipation
rate and the viscous-di�usion rate of k, which are the

two dominant terms in the near-wall region, and has
to be considered in modeling the near-wall turbulence
closure for k [14,15]. Following this argument, exclu-

sion of the pressure di�usion term as done in Eq. (21)
is questionable in the near-wall region and this will be
justi®ed later.

3. Near-wall turbulence models

Extensive research e�orts have been made in devel-
opment of the near-wall turbulence closure models,

including the LRN versions of the two-equation k±e
models and of the second-order Reynolds stress
models, for predictions of wall-bounded shear ¯ows in

the past two decades. Since the LRN Reynolds stress
models are much complex mathematically than the
LRN k±e models and the ¯ow problem to be tested is

a simple channel ¯ow, two LRN versions of the k±e
models developed by Myong and Kasagi [16] and by
Nagano and Shimada [14] (hereinafter referred as the
MK and NS models, respectively) are selected in the

present calculations for demonstration. Between them,
the MK was the one out of the nine LRN k±e models
(excluding the NS model) investigated by Hrenya and

coworkers who yielded the best overall performances
in predicting turbulent pipe ¯ows with [1] and without
[17] heat transfer, while the NS model which was

developed from the direct-numerical-simulation (DNS)
data of the detailed near-wall ¯ow structure of the
benchmark ¯ow considers the pressure di�usion e�ects

Table 1

Summary of coe�cients and model functionsa

Models D E ew sk se C1 C2

MK [16] 0 0 v� @ 2k
@ y2
� 1.4 1.3 1.4 1.8

NS [14] max�ÿ v
2
@
@ y � fw1

k
e
@ e
@ y �,0� fw2vvt� @ 2u@ y2

�2�C3v
k
e
@ k
@ y

@ u
@ y

@ 2u
@ y2
�C4v

@
@ y � fw1�1ÿ fw1� ek @ k@ y � 2v�@ ���

k
p
=@y�2 1:2=ft 1:3=ft 1.45 1.9

a Cm � 0:09, C3 � 0:005, C4 � 0:5, ft � 1� 3:5 exp�ÿ�0:01Rt�3=4�.

K.-C. Chang, M.-J. Shyu / Int. J. Heat Mass Transfer 43 (2000) 665±676668



in the formulation of k and e transport equations (D
and E terms, respectively, see Table 1).
The general forms of the transport equations for the

turbulent kinetic energy and its dissipation rate are

@
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ÿ
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� � @

@x j

"�
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sk

�
@k

@x j

#
� Gk ÿ re�D �22�
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�ruje� � @

@x j

"�
m� mt

se

�
@ e
@x j

#
� �C1f1Gk

ÿ C2f2re� e
k
� E �23�

where the production term Gk and the eddy viscosity
mt are expressed, respectively, as

Gk � 2mt
@ui
@x j

@ui
@x j

�24�

mt � rCmfm
k2

e
�25�

The coe�cients and the model functions shown in Eqs.

(22)±(25) for the two tested turbulence models are
summarized in Tables 1 and 2.

4. Test problem and numerical aspects

Test problem is the parallel-plate channel air ¯ow
with constant wall heat ¯ux. Uniform mean streamwise
and zero mean transverse velocity pro®les as well as

uniform mean temperature pro®le are assigned at the
inlet. The inlet pro®les of k and e are given in the fol-
lowing empirical manner:

k � 0:03u2 and e � Cm
k3=2

0:03H
�26�

Length of computational domain is extended to 40H
which assures the ¯ow with the speci®ed inlet con-

ditions being fully developed. The fully-developed con-
dition of temperature for the case of constant wall
heat ¯ux is @ 2y=@x 2 � 0. At the symmetric centerline,

the zero-gradient condition is met except for n =0. At
the solid wall, all quantities vanish except for ew,
which is speci®ed in Table 1, and yw. The wall heat

¯ux is de®ned by

q�w � ÿl�eff

@ t�

@y�

����
w

�27�

with

l�eff � c�mm
�
�

1

sm

� mt
st

�
�28�

where m = cp or cv depending on the de®nition of the
molecular Prandtl number. A constant value of st �
0:9 [18] is chosen for the calculations with the present
boundary-layer ¯ow. Nondimensionalization of Eq.

(27) yields

@y
@y

����
w

� ÿ
�
1� mt

�
sm

st

��ÿ1
�29�

However, if the ®rst grid node is placed in the immedi-

ate vicinity (viscous sublayer) of the wall, mt40 and
the term in the bracket of Eq. (29), then, approaches
unity value.

Grid mesh used for the computational domain con-
sists of 80 � 80 (streamwise by transverse) nonuni-
formly distributed grid nodes. To ensure the resolution

of the near-wall region, about half of the grid nodes
are placed within y� � 50 and the ®rst grid node from
the wall was placed at y� � O�10ÿ1�.
Solutions of the governing equations are obtained

by the ®nite-volume method incorporated with the
orthodox QUICK scheme [19] and the SIMPLEC al-
gorithm with nonstaggered grid system [20]. The com-

puted solution is assumed to have converged when the
magnitude of the absolute residuals of momentum and
energy, normalized by their respective inlet ¯uxes, falls

below 10ÿ5.

5. Results and discussion

To clarify our doubt that the Reynolds-averaged
energy equation, (21), which were commonly used in

Table 2

Summary of the viscous damping functionsa

Models fm f1 f2

MK [16] �1ÿ exp�ÿ y�
70 ���1� 3:45

R1=2
t

� 1 f1ÿ 2
9exp�ÿ�Rt

6 �2�g�1ÿ exp�ÿ y�
5 ��2

NS [14] �1ÿ fw2�f1� 45

R3=4
t

exp�ÿ�Rt

55 �1=2�g 1 �1� f 02 ��1ÿ fw1�
a f2 � exp�ÿ2� 10ÿ4R13��1ÿ exp�ÿ2:2R1=2��, fw1 � exp�ÿ� y�9 �2�, fw2 � exp�ÿ� y�44 �2�, R � k

e �u2t=�v� vt��� 1

R1=2
t

� fw1, Rt � k2

ve ,

y� � uty=v, ut � � tw

r �1=2.
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the convective heat transfer studies, might be overap-

proximated when working with the near-wall turbu-

lence models, this equation and the one of the less

approximated forms of the energy equation, (18), are

separately solved for the temperature distributions of

the test cases. Note that the only di�erence existed

between Eqs. (18) and(21) is the de®nition of the mol-

ecular di�usion coe�cient in terms of either scv, or scp

respectively. Constant air density is assumed in the cal-

culations since the temperature variations of the test

Fig. 1. Pro®les of (a) mean streamwise velocity, (b) turbulent kinetic energy, (c) dissipation rate of turbulent kinetic energy, and (d)

the Reynolds shear stress obtained with the two test models at Ret � 150.
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cases are small (less than 20 K) With this assumption,
the solution of the ¯ow ®eld is thus decoupled with the
solution of the thermal ®eld, i.e., is independent of the

choice of scv or scp in the Reynolds-averaged energy
equation.
Calculations with the two test models are performed

for the two benchmark cases with ReDh
� 27,500

�Ret � 395� and ReDh
� 9,160 �Ret � 150�, respect-

ively, since the detailed turbulence quantities are avail-
able from the DNS database [13,21,22] and [23,24],

respectively.
The normalized pro®les of the mean streamwise vel-

ocity, the turbulent kinetic energy and its dissipation

rate, and the Reynolds shear stress obtained with the
both test turbulence models are shown as a function of
y��� u�ty

�=v�� and compared with the available DNS

data [23] in Fig. 1 for the case of Ret � 150. The ex-
perimental correlations based on the law of the wall
are also included in Fig. 1a for further comparison
with the predictions. It is clear that the turbulence

quantities predicted with the NS model are in better
agreement with the DNS data and the experimental
correlations than what obtained with the MK model.

In particular, the NS model gives qualitatively and
quantitatively more exact predictions for the near-wall
pro®le of e than what the MK model does. Similar ob-

servation can be made for the case of Ret � 395.
However, detailed comparison between the model pre-
dictions and the DNS data for the case of Ret � 395
can be found in the paper of Nagano and Shimada

[15]. The results for the case of Ret � 395 predicted
with the two test turbulence models are not presented
here for reasons of brevity. Table 3 collects the skin

friction coe�cients for the two test cases predicted
with the MK and NS models and compares them with
the DNS data and the experimental correlations com-

puted from the empirical formula of Dean [25]:

Cf � 0:0868Reÿ0:25Dh
, 1:2� 104 < ReDh

< 1:2� 106

�30�
Note that the ReDh

value of 9160 for the ¯ow at Ret �
150 is rather low and beyond the applicable bounds of
Dean's formula. However, its Cf value evaluated from
Eq. (30) is also listed in Table 3 for reference. It can

be concluded, based on all the above comparison, that
the NS model, which considers the pressure di�usion
e�ects in the near-wall turbulence modeling, provides

better ®ts to the DNS data and to the law of the wall
and consequently predicts the skin friction coe�cients
more accurately, as compared to the MK model.

Fig. 2 compares the predictions of t� �� r�c�p�t�w ÿ
t��u�t=q�w� obtained separately with the NS and MK
models by used of either Eq. (18) or Eq. (21) for the
two test cases. The experimental correlations made by

Kader [26] are included in Fig. 2 for the purpose of
comparison. Only the DNS data of thermal ®eld at
Ret � 150 are available [24]. These DNS data are also

presented in Fig. 2a and b. The results reveal that the
t� predictions using Eq. (21) are lower than those
using Eq. (18) particularly in the region with about

y� > 10 for both of the tested turbulence models.
Furthermore, the NS model incorporated with Eq. (18)
which is a less approximated form of the Reynolds-
averaged energy equation, compared to Eq. (21), pro-

vides the best ®t to either the DNS data of Kasagi et
al. [24] or the experimental correlations of Kader [26].
Tables 4 and 5 collect the Nusselt numbers predicted

from the two tested turbulence models either with Eq.
(18) or Eq. (21) for the cases at ReDh

� 395 and 150,

Table 3

Comparison of the predicted skin friction coe�cients ��103�

Ret MK model NS model DNS data Dean's correlation, Eq. (30)

395 6.06 6.37 6.60 [22] 6.74

150 7.38 8.47 8.58 [23] 8.87a

a The ReDh
value of 9160 �Ret � 150� is beyond the applicable bounds of Eq. (30).

Table 4

Comparison of the predicted Nusselt numbers at Ret � 395a

Model Eq. (18) Eq. (21) Eq. (21) with the P @
@ x j
�puj � term

NS 62.49 73.75 74.10

MK 57.96 69.10 69.41

a Gnielinski's correlation, Eqs. (33) and (34): 65.95.

Table 5

Comparison of the predicted Nusselt numbers at Ret � 150a

Model Eq. (18) Eq. (21)

NS 27.93 31.82

MK 25.20 28.50

a Gnielinski's correlation, Eqs. (33) and (34): 27.78 (the

ReDh
value of 9.160 for the present case is slightly beyond the

applicable bounds of Eqs. (33) and (34)); DNS [24]: 30.8.
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respectively. Here the Nusselt number is determined as

follows. According to Newton's law of cooling:

q�w � h�
ÿ
t�w ÿ t�b

� �31�

Through the relationships of Eqs. (27) and (28), the
Nu can be expressed in the dimensionless form of

Nu �
�
1� mt

sm

st

� t�p
t�b

1

yp
�32�

where m = cp or cv depending on the de®nition of the
molecular Prandtl number; and yp denotes the normal

distance of the ®rst grid node from the wall. The Nu
values evaluated from the empirical formula of

Fig. 2. Temperature distributions obtained respectively with the NS and MK models for the two test cases.

K.-C. Chang, M.-J. Shyu / Int. J. Heat Mass Transfer 43 (2000) 665±676672



Gnielinski [27],

Nu �
ÿ
ReDh

ÿ 1000
�
scp� f=8�

1� 12:7� f=8�1=2
�
s2=3cp ÿ 1

� �33�

where

f � ÿ0:79 ln ReDh
ÿ 1:64

�ÿ2
, 104 < ReDh

< 5� 106

�34�

are also listed in Tables 4 and 5. The trend in the Nu
prediction shown in Tables 4 and 5 is consistent with

what was observed for the Cf prediction (see Table 3),
i.e., the predictions using the MK model are below the
predictions using the NS model. Furthermore, the Nu

values predicted with Eq. (21) for both the test models
are 18.620.6% and 13.520.4% higher than those
predicted with Eq. (18) for the cases of Ret � 395 and
150, respectively. Comparisons made in Tables 4 and 5

indicate that the predictions using the NS model
worked with Eq. (18) provide the closest agreement
with the experimental correlations of Gniclinski [27].

This conclusion deems reasonable because the NS
model has been proven to be able to yield better pre-
dictions of the turbulent ¯ow structure than the MK

model. In addition, Eq. (18) is a more rigorous form
of the energy equation than Eq. (21).
However, the Nu value (30.8) at Ret � 150 obtained

from the DNS calculation of Kasagi et al. [24] some-

what deviates from (about 11% higher) the

Gnielinski's correlation �N � 27:27). It should be

noted that the ReDh
of 9,160 for the case at Ret � 150

is slightly beyond the lower bound (104) of Gnielinski's

formula. It is worthwhile to understand why the tem-

perature distribution of the DNS data (see Fig. 2a) is

in good agreement with the experimental correlations

made by Kader [26], whereas the Nu values determined

from the DNS data is overpredicted than from the ex-

perimental correlations made by Gnielinski [27]. In the

DNS calculation of Kasagi et al. [24], they adopted the

energy equation in the form of Eq. (15) but dropped

the term of Ec @
@x j
�PUj � due to the usual approximation

for the low-Mach-number ¯ow. The corresponding

Reynolds-averaged energy equation is the same as Eq.

(21). However, the comparisons made from Fig. 3 and

Table 5 revealed that the temperature pro®le predicted

with Eq. (21) is apparently lower than that of DNS

calculation except in the very near-wall region

�y� < 1), whereas their Nu values agree well each other

but both are higher than the Gnielinski's correlation.

As pointed out before, the di�erences between Eqs.

(21) and (19) are the absence of two terms of

Ec @
@ x j
�puj � and Ec @

@x j
�p 0u 0j �. In order to examine which

dismissed term plays more important role resulting in

the observed discrepancies of the temperature and Nu

predictions, the calculations using Eq. (21) with the ad-

Fig. 3. Variations of the ratio of the e�ective di�usion coe�cient used in Eq. (18) to the one in Eq. (21) and of mt=st versus y
� at

Ret � 395.

K.-C. Chang, M.-J. Shyu / Int. J. Heat Mass Transfer 43 (2000) 665±676 673



ditional Ec @
@x j
�puj � term are implemented for the case

of Ret � 395 and their predicted Nu results are listed
in Table 4 too. Comparison between the Nu predic-
tions using Eq. (21) with and without the Ec @

@x j
�puj �

term reveals that the inclusion of the Ec @
@x j
�puj � term

in the Reynolds-averaged energy equations a�ect
slightly the Nu predictions for both the test turbulence

models. Similar observation is obtained from the com-
parison between the predicted temperature distri-

butions using Eq. (21) with and without the Ec @
@x j
�puj �

term which are not presented here for reasons of brev-
ity. It implies that exclusion of the pressure gradient

term in the Reynolds-averaged formulation of the
energy equation as done in Eq. (21) is the main reason

resulting in erroneous predictions of the temperature
distribution and the Nusselt number compared to what
obtained with Eq. (18). However, the study on the

budget of the pressure di�usion term in the DNS cal-
culation [13] revealed that this term has to be taken
into account in the region very close to the wall, and

its contribution can be negligible in the other region of
the ¯ow ®eld. A conclusion can thus be drawn as fol-

lows. The usual approximation which neglects the
work of compression and that due to friction in the
energy equation, (15), is valid except in the very near-

wall region where the advective e�ect becomes small
due to the no-slip condition at the wall. This, then,
explains the present comparison results between the

DNS data and the experimental correlations, that is,
well agreement in the temperature pro®le but overesti-

mation in the Nusselt number. Further corroboration
of this inference can be done by repeating DNS calcu-
lation using either Eq. (14) or Eq. (15) but without

neglecting the Ec @
@x j
�PUj � term, and it remains to be

studied in the future.

It has been demonstrated that, when solved by the
Reynolds-averaged formulation along with the low-
Reynolds-number k±e models, the choice of either Eq.

(18) or Eq. (21) to serve as the energy equation did
yield remarkable di�erences in the predictions of the
temperature distribution and the Nusselt number. To

look inside how the di�erent de®nitions of the molecu-
lar Prandtl number used in Eqs. (18) and (21) a�ects

the simulation result, Fig. 3 which records variations
of the ratio of the e�ective di�usion coe�cient,
m=s� mt=st, used in Eq. (18) to the one in Eq. (21)

and of mt=st in the ¯ow ®eld for the case of Ret � 395
is presented. As shown in Fig. 3, mt approaches zero

value in the vicinity of the wall where the inertia terms
of the Reynolds-averaged equations of momentum and
energy become small due to the no-slip condition

imposed on the wall (see Fig. 1a) while the di�usion
terms become dominant. It leads to the result of Fig. 3
that the molecular di�usion coe�cient, m=s, plays

more dominant role, as the transverse position y is
moved closer to the wall, in the determination of the

e�ective di�usion coe�cient. It is agreed that the use

of the low-Reynolds-number turbulence models

requires a number of grid nodes being placed in the

near-wall region. For example, approximate 40 grid

nodes were placed in the region within y� � 50 and

the ®rst grid node was at y� � O�10ÿ1�, where mt � m

Fig. 4. Comparison between the experimental correlations and

the predictions of (a) skin friction coe�cients and (b) Nusselt

numbers using the two test models at di�erent levels of

Reynolds number.
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in the present calculations. Nevertheless, the result of

Fig. 3 shows that the use of scv or scp does a�ect the

values of the e�ective di�usion coe�cient in this near-

wall region for the thermal ®eld calculation incorpor-

ated with the LRN k±e turbulence models. In contrast,

the conventional wall-function approach which bridges

the conditions at the wall to the fully turbulent ¯ow

zone and permits to use coarse grid density in the

near-wall region is insensitive to the value used for s
in the calculations, because the ®rst grid node from the

wall must be placed in the region of yp > 11:6 to apply

for the law of the wall [7] where mt=st, becomes domi-

nant as shown in Fig. 3. This could explain why the

overapproximation made in Eq. (21) does not cause

remarkable errors in the thermal ®eld calculations

using the wall-function approach.

It has to be noted that the DNS data selected for

the present comparisons were carried out at very low

Reynolds numbers which are beyond most of engineer-

ing interest. It will be instructive to compare the exper-

imental correlations with what would be predicted

with either Eq. (18) or Eq. (21) at higher Reynolds

numbers. Fig. 4 shows predicted Cfs and Nus at di�er-

ent levels of ReDh
together with the relevant experimen-

tal correlations. It is concluded once more that the NS

model is superior to the MK model as far as the ability

to predict Cf is concerned, while the NS model worked

with Eq. (18) is capable of yielding satisfactory Nu pre-

dictions as compared to the Gnielinski's correlations.

It is interesting to note that the MK model worked

with Eq. (21) which is an overapproximated form of
the Reynolds-averaged energy equation happens to

yield good Nu predictions as reported in the study of
Hrenya et al. [1].
The e�ective di�usion coe�cient appeared in the

Reynolds-averaged energy equation is composed of
m=s and mt=st. It can be expected that Nu and the
t� pro®le are also in¯uenced by, except s value, the

ability of the turbulence model to predict mt in the
near-wall region and the value selected for st. Fig. 5
shows a typical e�ect of st on the temperature distri-

bution at Ret � 395. The NS model worked with Eq.
(18) is used for the demonstration since this turbulence
model has been shown to have better ability to predict
near-wall ¯ow structure accurately. The calculated dis-

crepancies of Nus from the Gnielinski's correlation (see
Table 4) with st � 0:85, 0.9 (selected for the present
work), and 1.0 are ÿ9.6, ÿ4.9, and ÿ2.2%, respect-

ively. The study for the case of Ret � 395 shows that
increasing st, pushes the t� pro®le higher than data of
Kader [26], which moves Nu closer to the Gnielinski's

correlation. It indicates that the value selected for st
a�ects the solution of the thermal ®eld to a certain
extent. The pro®le of st in the near-wall region has

been a matter of conjecture; for example, Kays [28]
examined st variation in the two-dimensional, fully
developed ¯ow using the presently available experimen-
tal and DNS data. He attempted to ®nd some corre-

lations of st in terms of turbulent Peclet number and
y� for whole range of Prandtl number. However, Kays
adopted Eq. (21), which has been shown as an overap-

proximated form of the Reynolds-averaged energy
equation, in the heat transfer analysis including
gaseous media; consequently, part of his conclusions

drawn in Ref. [28] has to be re-examined and remains
to be studied further using a rigorous form of the
Reynolds-averaged energy equation for gaseous media.

6. Conclusions

The Reynolds-averaged energy equation used with
the LRN k±e models is revisited. It is shown that Eq.
(21) which was so commonly used in theoretical studies
of the turbulent heat transfer for gaseous media yields

remarkable deviations in the thermal ®eld prediction
particularly for Nusselt number, mainly due to the
overapproximation by dropping the pressure di�usion

term in it. Eq. (18), which is one of the rigorous forms
of the Reynolds-averaged energy equation in terms of
temperature and free of the unknown correlation p 0u 0j ,
is suggested to be used in the formulation of the turbu-
lent heat transfer for gaseous media when working
with the near-wall turbulence closure models.

Fig. 5. E�ect of st on temperature distribution at Ret � 395

using the NS model and Eq. (18).
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